<u>Precalculus 11</u> <u>Sec 3.1 - Quadratic Functions in Standard Form (Part 2)</u>

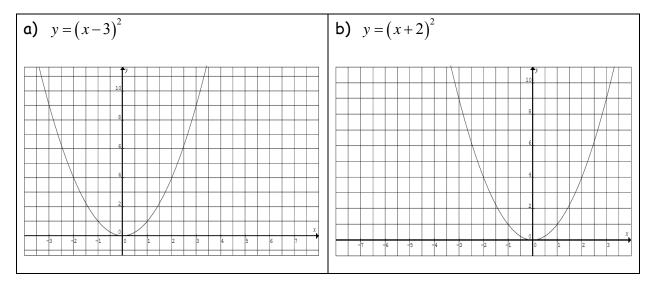
As we continue, the 'p' value in $y = (x - p)^2$ has one function only:

- It determines how the graph will shift horizontally, ie, shift left or right
 - If p = (+)ve, ie, $y = (x (+p))^2 = (x p)^2$, the graph shifts right 'p' units

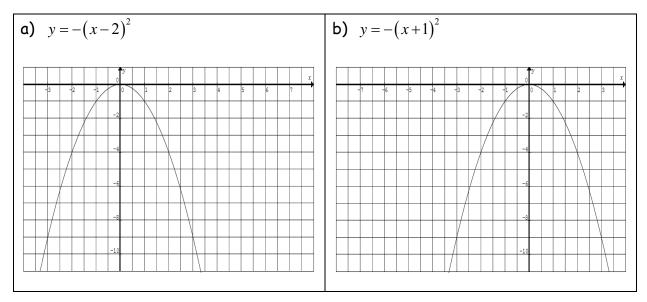
• If
$$p = (-)ve$$
, ie, $y = (x - (-p))^2 = (x + p)^2$, the graph shifts left 'p' units

- The key thing to remember is that <u>only the x-coordinates are affected</u> <u>through addition or subtraction</u>.
 - \circ The shape of the new graph will not change, ie, it will BE CONGRUENT

Example 1: Given $y = x^2$, graph the following functions



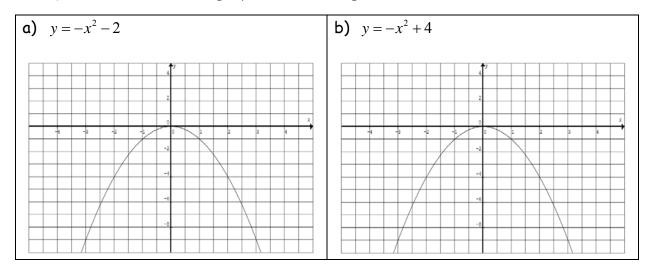
Example 2: Given $y = -x^2$, graph the following functions



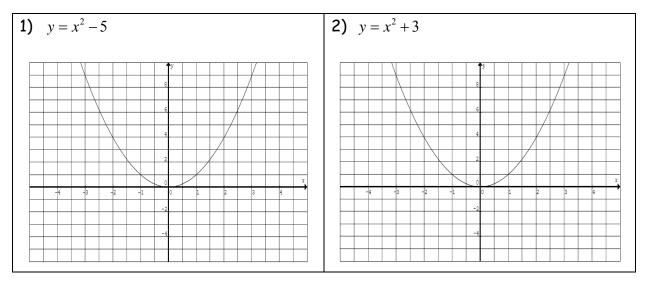
The 'q' value in $y = x^2 + q$ has only one function:

- It determines how the graph will shift vertically, ie, shift up or down
 - If q = (+)ve, ie, $y = x^2 + (+q) = x^2 + q$, the graph shifts up 'q' units
 - If q = (-)ve , ie, $y = x^2 + (-q) = x^2 q$, the graph shifts down 'q' units
- The main thing is that <u>only the y-coordinates will be affected through</u> <u>addition or subtraction</u>
 - \circ The shape of the new graph will not change, ie, it will BE CONGRUENT

Example 3: Given $y = -x^2$, graph the following functions



Example 4: Given $y = x^2$, graph the following functions

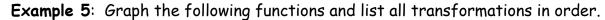


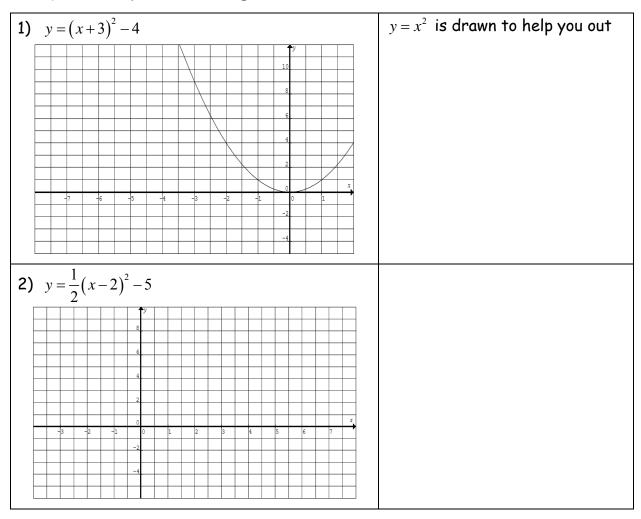
If we put all these transformations altogether, we can graph any quadratic functions in standard form: $y = a(x-p)^2 + q$ To graph quadratic functions properly, the following steps must be done in order:

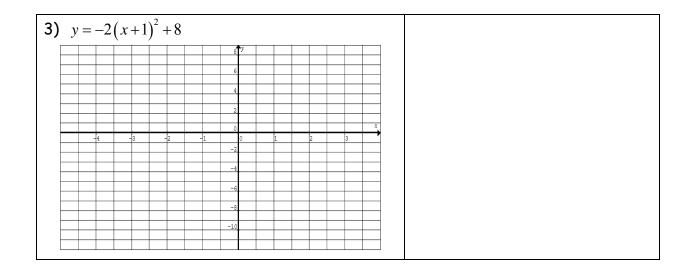
1) All vertical expansions or compressions

• VE if
$$a > 1$$
, ie, $y = 3x^2$ and VC if $0 < a < 1$, ie, $y = \frac{2}{5}x^2$

- 2) All vertical reflections
 - Reflect about the horizontal axis if a = (-)ve, ie, $y = -ax^2$
- 3) All horizontal translations
 - Left if p = (-)ve, ie, $(x+p)^2$ and right if p = (+)ve, ie, $(x-p)^2$
- 4) All vertical translations
 - Down if q = (-)ve, ie, $x^2 q$ and up if p = (+)ve, ie, $x^2 + q$





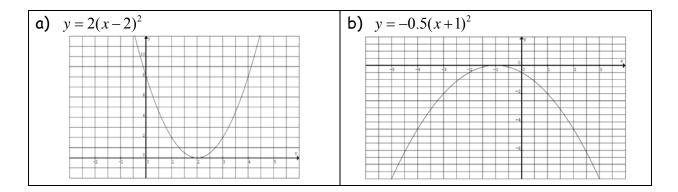


Example 6: Determine the equation of the graph in standard form given the vertex is at (-2, 3) and the y-intercept is 6.

- 1) Use the coordinates of the vertex and substitute into the equation $y = a(x-p)^2 + q$
- 2) Since the y-intercept = 6, substitute the coordinates, which happens to be (,), into the equation and solve for 'a' y = a(x-p)² + q

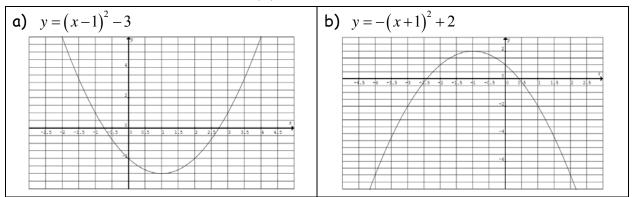
Example 7: What is the equation of the graph, in standard form, with a vertex at (-2, 3) and passes through (3, 4)

1) Quadratic functions will have <u>one x-intercept</u> only if q = 0

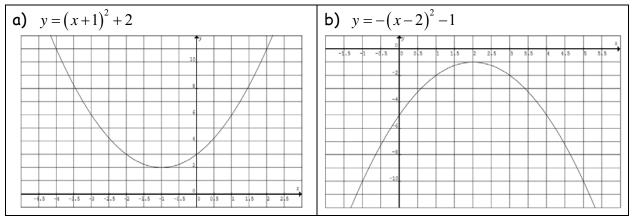


2) Quadratic functions will have two x-intercepts only if

- a. The graph opens up (a = (+)ve) and q < 0
- b. The graph opens down (a = (-)ve) and q > 0



- 3) Quadratic functions will have <u>no x-intercept</u> if
 - a) The graph opens up (a = (+)ve) and q > 0
 - b) The graph opens down (a = (-)ve) and q < 0



Example 8: Given each equation, determine the number of x-intercepts

a) $y = -\frac{3}{2}(x+4)^2 - 6$	b) $y = -\frac{2}{5}(x-3)^2 + 4$	c) $y = 3(x-6)^2$

Example 9: A small toy rocket is launched into the air. It reaches a maximum height of 120 m and falls 10 m from the launch pad. Assuming the flight of the rocket is parabolic, write an equation, in standard form, describing the height (h) of the rocket as a function of its horizontal distance (d) from the launch pad

Homework: